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We investigate the influence of spin-orbit coupling on the Kondo effects in carbon nanotube quantum dots,
using the numerical renormalization group technique. A sufficiently large spin-orbit coupling is shown to
destroy the SU�4� Kondo effects at zero magnetic field, leaving only two SU�2� Kondo effects in the one- and
three-electron Coulomb-blockade valleys. On applying a finite magnetic field, two additional, spin-orbit in-
duced SU�2� Kondo effects arise in the three- and two-electron valleys. Using physically realistic model
parameters, we calculate the differential conductance over a range of gate voltages, temperatures, and fields.
The results agree well with measurements from two different experimental devices in the literature, and explain
a number of observations that are not described within the standard framework of the SU�4� Anderson impurity
model.
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I. INTRODUCTION

Quantum dots fabricated within carbon nanotubes �CNTs�
have attracted considerable attention in recent years �for re-
views see, e.g., Refs. 1 and 2�. Such devices, in which elec-
trons are trapped within a small, strongly interacting region
of the CNT by an applied electric field, show remarkable
electronic transport properties1,2 and may have useful appli-
cations in future technology.3

CNT-based devices are of particular interest due to their
doubly degenerate orbital structure which, combined with
electron spin, generates a wealth of basic physics. One such
phenomenon is the Kondo effect,4 resulting from strong elec-
tron interactions within the dot. It is observed5–10 when the
device is tuned so that the dot has a partially filled shell of
electrons: on lowering the temperature, the dot’s spin/orbital
degrees of freedom become strongly coupled4 to those of the
leads, leading to a complex many-body ground state with an
enhanced electronic conductance.11,12 Understanding this ef-
fect is particularly important for CNT dots, because the in-
volvement of both spin and orbital degrees of freedom gen-
erates an SU�4� Kondo effect that persists to considerably
higher temperatures—up to a few kelvin �i.e., a few tenths of
a millielecron volt�—than the standard SU�2� Kondo effect
in semiconductor devices.13–15 Using a range of many-body
techniques, the theory of the SU�4� Kondo effect is now well
established16–32 and, e.g., has been shown31 to be in good
agreement with experiments10 performed in the absence of a
magnetic field.

Another consequence of the interplay between spin and
orbital degrees of freedom in CNT devices is spin-orbit �SO�
coupling. Its existence was beautifully demonstrated in
experiments33 on a very strongly correlated CNT dot, where
it generates a splitting of sequential tunneling spectra at finite
bias, and kinks in the magnetic field dependence of the
Coulomb-blockade �CB� “staircase” at zero bias. The
strength of the SO coupling was measured,33 and for the
device studied found to be of order 0.2–0.4 meV, varying
somewhat between different electron shells.

Comparing the typical energy scales of the Kondo effect

and the SO coupling, it is striking that both may arise on the
energy scale of a few tenths of a millielectron volt. Two
related questions then arise: what effect does SO coupling
have on the standard SU�4� Kondo theory and is the
Kondo/SO competition seen experimentally? We seek to an-
swer these questions in this paper.

Aspects of spin-orbit coupling in CNTs have recently
been considered theoretically. The origins of the coupling
itself have been determined from direct microscopic
calculation,34,35 showing that while a number of distinct spin-
orbit interactions arise in principle, the dominant contribu-
tion is the direct coupling between each electron’s spin and
orbital angular momentum. The effect of this coupling on the
states of the isolated dot has been analyzed in detail,36,37 and
the resulting sequential tunneling transport properties �aris-
ing when the Kondo scale is too small to be seen
experimentally33� have been calculated and compared to
experiment.38 Aspects of the competition between spin-orbit
coupling and the Kondo effect have also been studied39 via
an equation of motion decoupling scheme in the U→� limit.
Within this rather crude approximation,40 the splitting of the
SU�4� Kondo resonance was examined for finite SO cou-
pling and magnetic field, and an orbital Kondo effect found
at finite field in the two-electron Coulomb-blockade valley.39

In the present work we consider the twofold orbitally de-
generate SU�4� Anderson impurity model �AIM� in a mag-
netic field with SO coupling, and study it using the numerical
renormalization group41,42 �NRG� backed up by simple
physical arguments. NRG is ideally suited to the problem,
being known for similar quantum impurity models to provide
numerically exact results on the low-energy/temperature
scales relevant to experiment. The model itself also has a
strong track record, a previous NRG study31 of the SU�4�
AIM in the absence of a magnetic field having shown that
the all-important low-energy Kondo physics is well repro-
duced when the bare model parameters are fitted to high-
energy conductance features such as the Coulomb-blockade
diamonds.

The paper is laid out as follows. The model is described in
Sec. II, and the relevant theoretical background and NRG
technique are discussed in Sec. III. The behavior of the
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model in the atomic �lead-uncoupled dot� limit is outlined in
Sec. IV from which simple arguments are then used to de-
duce the effect of introducing a finite spin-orbit interaction.
The main body of the paper is Sec. V, where we present and
discuss the results of NRG calculations. We begin by consid-
ering the zero-bias conductance, as a function of gate volt-
age, temperature, and magnetic field. Here we make com-
parison to the experiments of Jarillo-Herrero et al.,8 showing
that the orbital splitting identified empirically in experiment
is readily explained by the inclusion of spin-orbit coupling in
the model. We then turn to a discussion of the finite-bias
conductance, comparing explicitly to the experiments of
Makarovski et al.9 and showing that the asymmetry observed
in the Kondo peaks at finite bias is also well described by the
theory. The paper concludes with a brief summary, and a
discussion of the applicability of the pure SU�4� AIM to
CNT quantum dots.

II. MODEL

The basic model used to describe a CNT quantum dot is
the SU�4� Anderson impurity model,22,30,31,39 given in con-
ventional notation by4

ĤSU�4� = �
k,m

�kn̂km + �
k,m

Vk�ckm
† dm + H.c.�

+ �N̂ +
1

2
U �

m,m�

n̂mn̂m�. �1�

The “flavor” index m takes four discrete values, which SU�4�
symmetry reflects physically a combination of degenerate
spin and orbital degrees of freedom: m= �i ,�� with i
� �1,2� denoting clockwise and anticlockwise orbits along
the z direction �major axis� of the CNT, and �� �↑ ,↓� for the
z components of electron spin. The final two terms in Eq. �1�
represent the isolated dot with orbital energy � and charging
energy U=e2 /C �C is the dot capacitance�; where n̂m

=dm
† dm, N̂=�mn̂m is the total dot number operator, and dm

†

=di�
† creates a �-spin electron in orbital i. The first pair of

terms describe the noninteracting conduction band �lead�,
and tunnel coupling between the dot/lead. Each is taken to be
spin and orbital conserving,22,43 reflecting physically the fact
�see, e.g., Ref. 9� that in clean CNT devices the leads are
formed within the nanotube and so “carry” the orbital sym-
metry, which is then conserved in the tunneling process.

The model represents the experimentally relevant situa-
tion in which the single-particle level spacing of the dot ex-
ceeds both the tunnel coupling to the leads and the intradot
interactions.10 In this case the four-electron “shells” of the
dot are filled sequentially on sweeping the gate voltage Vg
��−�� and, for sufficiently low temperatures and source-
drain biases, only a single shell need be considered at a time.
Only the direct Coulomb repulsion between dot electrons is
moreover included; exchange interactions are generally
weaker44 and are not necessary31 to account for the experi-
mental results of, e.g., Ref. 10.

To the “standard model” above, we add the coupling to
the external magnetic field, as well as the key SO coupling of

interest here. For a field B applied parallel to the nanotube
axis, the Zeeman coupling to the spin and orbital degrees of
freedom takes the form38,39

ĤB = − B�
i

��sŝi
z + �o�̂i

z� , �2�

where

ŝi
z =

1

2
�n̂i↑ − n̂i↓� �3�

and

�̂1
z = +

1

2
�n̂1↑ + n̂1↓� , �̂2

z = −
1

2
�n̂2↑ + n̂2↓� �4�

are the z components of the spin and orbital-pseudospin op-
erators for orbital i; and where the coupling constants are
�s�g�B �with g�2 the electron g-factor� and �o�2�orb
�with �orb the orbital moment�.

The SO interaction obtained from detailed microscopic
calculations is rather complicated,34–37 but in practice only
direct coupling between electron spin and the z component of
orbital angular momentum is relevant.34,35,38,39 As explained
in Ref. 38, the SO interaction is then given by

ĤSO = − 2��
i

�̂i
zŝi

z, �5a�

=��ŝ2
z − ŝ1

z� �5b�

with � parametrizing the strength of the SO coupling; and
which simple form, for example, explains in essence fully
the sequential tunneling experiments of Ref. 33.

The full Hamiltonian considered is thus

Ĥ = ĤSU�4� + ĤB + ĤSO, �6�

inclusion of ĤB+ ĤSO lowering the symmetry from SU�4� to

U�1�	U�1�	U�1�	U�1� �such that Ĥ commutes with the
four charge operators �kn̂ki�+ n̂i��.

Finally, to connect to experiment we simply treat U, �,
and the ratio �o /�s as parameters chosen to fit experiment
�which, in practice, is quite straightforward and unambigu-
ous�. The dot level energy � is proportional to the experimen-
tal gate voltage, of form −�=
Vg+�; but in practice it is
more convenient to work with a dimensionless gate voltage31

Ng =
1

2
�1 −

2�

U
	 �7�

such that differences in Vg are proportional to differences in
Ng �with a proportionality constant determined if desired by
fit to experiment�.

III. THEORETICAL BACKGROUND

The dot Green’s function Gi����↔Gi��t�=
−i�t�
�ci��t� ,ci�

† �� is central to understanding transport
through the dot; which is directly related to the single-
particle spectrum Di����=− 1

� Im Gi���� via the Meir-
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Wingreen formula,45 as now briefly summarized.
One first partitions the conduction band of Eq. �1� into

two equivalent leads, left �L� and right �R�. These are taken
conventionally4 to be flat bands of width 2D, with density of
states ����=�0=1 / �2D� for ����D �and with D by far the
largest energy scale in the model, which is why both the SO
interaction Eq. �5�� and the magnetic field Eq. �2�� can, in
practice, be taken to couple solely to the dot orbitals�. The
tunneling matrix elements to the L and R leads are taken for
simplicity as VL and VR independent of k. The leads are fixed
at different chemical potentials, �L and �R, with a bias volt-
age Vsd between them, �L−�R=eVsd. After transients have
subsided, the bias voltage gives rise to a steady-state current
through the dot, J, carried by its four conduction channels.
An exact expression for J follows from the Keldysh
formalism:45

J =
e

h
G0���L + �R��

−�

�

d�fL��� − fR�����
i,�

Di���� ,

�8�

with

G0 =
4�L�R

��L + �R�2 , �9�

where ��=��V��2�0 is the hybridization strength of the dot to
lead � �=L or R�, and f����= e���−���+1�−1 is the Fermi
function for the lead with inverse temperature �=1 /T �kB
=1�. It is convenient to define �L+�R=� �we later take � to
be the “unit” of energy�, such that the relative strength of
coupling to the L and R leads enter through the dimension-
less G0 �which can be chosen according to the experimental
setup under consideration�. In the perfectly symmetric case
of �L=�R, G0=1 is maximal, while in the extreme asymmet-
ric case of �L��R �say�, G0�4�L /�R�1.

The key experimental quantity is the differential conduc-
tance, Gc�Vsd�=dJ /dVsd. In the zero-bias limit, Eq. �8� gives
an exact expression for Gc�0��Gc

0 in terms of the equilib-
rium single-particle spectrum

Gc
0 =

e2

h
G0���

−�

�

d��−
� f

��
	�

i,�
Di���� �10�

with f���= �e��+1�−1, which further reduces to

Gc
0 =

T→0e2

h
G0���

i,�
Di��0� �11�

for T=0. Di���� can be calculated accurately at equilibrium
using the recent FDM NRG method.46,47

To make connection to experiments at finite source-drain
bias, note that while Eq. �8� itself remains exact for finite Vsd,
the difficulty lies in calculating Di���� out of equilibrium.
While recent progress has been made in applying NRG to the
nonequilibrium single-impurity Anderson model �see, e.g.,
Ref. 48� it is currently prohibitive to apply these techniques
to the model of Eq. �6�. As in previous work31,49 we thus
make the standard approximation of neglecting the Vsd de-
pendence of the dot self-energy. Using Eq. �8� this leads to

Gc�Vsd� =
e2

h
G0���

−�

� d�

2
�−

� fL���
��

−
� fR���

��
	�

i,�
Di���� ,

�12�

where we have taken a symmetric voltage split49 between the
leads, �L/R= �eVsd /2. Equations �10�–�12� form the basis of
our calculations of Sec. V.

A. Friedel sum rule

Equation �11� relates exactly the zero-bias conductance at
T=0 to the four spectra Di� at the Fermi level, �=0. These,
in turn, can be obtained exactly in terms of the so-called
“excess charges” of the dot in the four distinct conduction
channels, as now sketched.

The Green’s function Gi���� is diagonal in spin and or-
bital indices, and given by

Gi���� = � + i0+ − �i� − ���� − �i�����−1, �13�

where ����=��−1 ln���+D� / ��−D��− i�D− ����� is the
�-dependent hybridization function, �i� the effective one-

electron energy under Ĥ Eq. �6��, and �i���� is the dot
self-energy. Luttinger’s integral theorem,4,50

Im �
−�

0

d�� ��i����
��

	Gi���� = 0, �14�

applies separately within each conduction channel �i ,��, al-
lowing one to follow the steps of, e.g., Ref. 4 to derive the
Friedel sum rule:4,51

�i� = �nimp;i�. �15�

This relates �i�, the �Fermi-level� phase shift of the conduc-
tion electrons in the �i ,�� channel, to the corresponding ex-
cess charge given by

nimp;i� = �
−�

0

d��Di���� + �
k

Dki���� − Dki�
0 ����� ,

�16�

where Dki���� Dki�
0 ���� is the �i ,�� conduction-electron

spectrum for wave vector k in the presence absence� of the
dot. The Fermi-level value of the spectrum at T=0 is readily
shown to satisfy4

��Di��0� = sin2��i�� , �17�

and hence from Eq. �11� we obtain

Gc
0 =

T→0e2

h
G0�

i,�
sin2��nimp;i�� . �18�

The T=0 zero-bias conductance is thus related to the excess
charges in the four conduction channels �themselves readily
obtained via a thermodynamic NRG calculation�. In the ex-
perimentally relevant limit where D is the largest energy
scale, these excess charges are moreover confined to the dot
itself. One can then approximate nimp;i� by 
n̂i��, thereby
producing a simple relationship between the dot occupancy
and its transport properties.

INTERPLAY BETWEEN KONDO PHYSICS AND SPIN-… PHYSICAL REVIEW B 81, 075437 �2010�

075437-3



In the SU�4�-symmetric limit ��=0=B� considered
previously,31 the excess charges are equivalent in all four
channels and hence nimp;i�=nimp /4 with nimp=�i,�nimp;i�.
Equation �18� then reduces to31

Gc
0 =

T→04e2

h
G0 sin2��nimp

4
	 . �19�

B. NRG

We analyze the model Eq. �6� using the NRG. This
technique42 has long provided access to numerically exact
results for thermodynamics and, with the recent identifica-
tion of its complete Fock space,52 an equally systematic and
reliable route to dynamical properties.

The basic approach is detailed in, e.g., Ref. 41. A loga-
rithmic discretization of the conduction-band states is first
used to map the Hamiltonian onto a countably infinite one-
dimensional chain. The linear chain is diagonalized itera-
tively, starting from a single site and adding the others one
by one. The key advantage of logarithmic discretization is
that the coupling constants along the chain decrease rapidly,
and the high-energy states of one iteration can be discarded
without affecting the low-energy states retained in later itera-
tions. As such, a fixed number of states can, in practice, be
kept at each iteration, rendering the iterative diagonalization
of the Hamiltonian numerically tractable.

The information obtained from each iteration allows one
to build up the thermodynamics and dynamics of the model.
Eigenstates of a given iteration are used to calculate thermo-
dynamics at an appropriately chosen temperature �suffi-
ciently low that discarded states of earlier iterations are un-
important, yet sufficiently high that the energy splittings of
later iterations are thermally smeared out�. This effective
temperature decreases exponentially with the iteration num-
ber, and hence allows access to thermodynamics on all
physical energy scales after only a modest number of itera-
tions.

Dynamics of the model are calculated by means of the
recent observation52,53 that the set of all discarded states
forms a complete basis of the discretized NRG Hamiltonian.
By expanding the full density matrix in this basis, accurate
results for dynamical correlation functions may be obtained
over a wide range of frequency and temperature scales.46,47

Dynamics of the discrete NRG Hamiltonian necessarily arise
as a series of isolated poles: in order to capture the behavior
of the original continuous model, one then convolves the
discrete spectra with an appropriate broadening function on a
logarithmic scale �see, e.g., Ref. 42�. Potential artifacts of the
discretization process are minimized in three standard ways:
dot-lead couplings are premultiplied by the standard A�

factor,41,54 the Oliveira “z averaging”55 is used to average
discrete spectra with different logarithmic discretizations,
and the Green’s function is obtained not directly but from its
self-energy,56 calculated as a ratio of two correlation func-
tions where any remaining discretization effects largely can-
cel.

The calculations in this work have been obtained with an
NRG discretization parameter �=3, exploiting the full

U�1�	U�1�	U�1�	U�1� symmetry of the model. We have
typically averaged results for five different z’s and have kept
the lowest 2500–4500 states at each iteration.

IV. ATOMIC LIMIT AND PHYSICAL PICTURE

Here we show that a physical understanding of the inter-
play between Kondo physics, SO and Zeeman couplings,
follows readily by considering the isolated dot �the atomic
limit, �=0�. The latter has been considered in Ref. 38, from
which we take results as required; denoting the dot states in
an obvious notation as �↑ ;−�=d1↑

† �−;−�, �−;↓�=d2↓
† �−;−�,

�−; ↑↓�=d2↑
† d2↓

† �−;−�, and so on.
The energies of the 16 possible isolated dot states follow

directly from Eq. �6� with Vk=0 and may be classified by

their total occupation number N= 
N̂�. In the absence of SO
and Zeeman couplings, �=0=B, the 4! / N ! �4−N�!�
N-electron states are degenerate, with energies E=N�+N�N
−1�U /2. On switching on � and B, the N=0 and 4 states are
trivially unaffected, while the N=1–3 electron states are
split as shown schematically in Fig. 1.

For B=0, SO coupling splits both the N=1 and 3 states
into two degenerate pairs separated by an energy �. The N
=2 states by contrast are split into three groups, of degenera-
cies 1, 4, and 1, with relative energies −�, 0, and �, respec-
tively.

Switching on the field further splits the states by both
spin- and orbital-Zeeman effects �Fig. 1�, and in the N=1
sector a singly degenerate ground state ��↑ ;−�� arises for all
B�0. The situation is somewhat more complicated in the
N=2 and 3 sectors, since in both cases competition between
SO and Zeeman effects leads to level crossings in the ground
state. In the N=2 sector it is the orbital Zeeman effect that
competes with SO coupling: the low-field ground state is
�↑ ;↓� as favored by the SO interaction Eq. �5b�, while at
higher fields the ground state �↑↓ ;−� is favored by the orbital
Zeeman interaction Eq. �2�� for the experimentally relevant

0 Bo Bs

−∆/2

∆/2

N = 1

B

E

0 Bo Bs

−∆

∆

N = 2

B

E

0 Bo Bs

−∆/2

∆/2

N = 3

B

E

FIG. 1. Splittings of the N=1, 2, and 3 atomic-limit states for
finite B and ��0 �relative to their values for B=0=��.
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case �o��s; the ground-state level crossing occurring at a
field

Bo =
�

�o
. �20�

In the N=3 sector by contrast it is spin Zeeman which now
competes with SO coupling, producing a level crossing from
the low-field ground state �↑↓ ;↓� to �↑↓ ;↑� at a field
Bs��Bo� given by

Bs =
�

�s
. �21�

These special values of the field turn out to be central to the
Kondo physics of the model, as explained below.

From the atomic-limit energies, the ground-state “phase
diagram” is readily constructed as a function of B and
−� ��Vg�. Figure 2 first shows the situation where SO cou-
pling is absent, �=0; solid lines marking the boundaries be-
tween states of different ground-state charge. For any fixed
B, increasing −� generates the familiar CB staircase. When �
lies sufficiently in excess of the Fermi level, both orbitals are
empty; and on lowering � through the Fermi level the total
number of electrons on the dot increases stepwise from zero
to four. Notice that, for all B, Fig. 2 is symmetric under
reflection about the line −�= 3

2U corresponding to the
midpoint of the N=2-electron valley, i.e., to replacing
�→−�+3U�; reflecting for �=0 the essential equivalence
of states with N and 4−N electrons under a particle-hole
transformation �specifically d1�

† ↔d2−��. And at points of de-
generacy between N and N+1 electrons �Fig. 2 solid lines�,
there is naturally facile zero-bias sequential tunneling
through the dot �and hence enhanced conductance� when it is
connected to the leads.38

Degeneracies between states of the same total charge do

not promote sequential tunneling, but are of course vital for
the Kondo effects arising from coherent cotunneling pro-
cesses on coupling to the leads �discussed below�. Such de-
generacies arise at zero field in the N=1, 2, and 3 valleys,
where all states of given N are degenerate. For any B�0,
however, there is an immediate “transition” to a singly de-
generate state in each case with maximal �z= 1

2 �n1−n2�.
The above situation changes qualitatively on introduction

of SO coupling; as illustrated in Fig. 3, showing the generic
behavior for ��0 and �o��s �albeit for illustration using a
somewhat smaller ratio �o /�s=Bs /Bo than seen experimen-
tally�. This structure is clearly more interesting than Fig. 2.
First, the SO coupling � has a dramatic effect at zero field.
In both the N=1 and 3 valleys the degeneracy of the ground
state at B=0 is reduced from 4 to 2 �as in Figs. 1 and 3�; the
degree of freedom associated with this twofold degeneracy
being neither a pure spin nor an orbital pseudospin, but a
mixture of the two. In the N=2 valley the effect of � is even
more severe: the sixfold degenerate ground state for �=0 is
replaced by the nondegenerate state �↑ ;↓�, the other five
states again lying O��� higher �cf. Fig. 1�.

The finite-field ground-state level crossings in the N=2
and 3 electron sectors �Fig. 1�, mean as shown in Fig. 3
�dashed lines� that for all � when N=2 there is a crossing
from �↑ ;↓� to �↑↓ ;−� at B=Bo;39 and likewise throughout the
N=3 sector, a crossing from �↑↓ ;↓� to �↑↓ ;↑� at B=Bs. As-
sociated with these ground-state crossovers are naturally
kinks in the CB steps seen in Fig. 3 �solid lines�, as discussed
in Ref. 38 and observed in the sequential tunneling experi-
ments of Ref. 33 on ultraclean CNT dots. By contrast there is
no ground-state level crossing in the N=1 sector �Fig. 1�.
Hence, as evident in Fig. 3, the “reflection symmetry” seen
in Fig. 2 for �=0 is absent—states with N and 4−N elec-
trons no longer being equivalent under the particle-hole

0

U

2U

3U

B

−ε

all N = 1

all N = 2

all N = 3

| − ; −〉

| ↑ ; −〉

| ↑↓ ; −〉

| ↑↓ ;↑〉

| ↑↓ ;↑↓〉

FIG. 2. Schematic atomic-limit ��=0� “phase diagram” in the
absence of SO coupling, as a function of B and −��Vg, showing
boundaries between ground states of different charge.

− 1
2 ∆

U − 1
2 ∆

2U + 1
2 ∆

3U + 1
2 ∆

Bo Bs

B

−ε

| ↑ ; −〉
|− ; ↓〉

}

|↑↓ ; ↓〉
| ↑ ;↑↓〉

}

| − ; −〉

| ↑ ; −〉

| ↑ ;↓〉 | ↑↓ ; −〉

| ↑↓ ;↓〉
| ↑↓ ;↑〉

| ↑↓ ;↑↓〉

FIG. 3. As Fig. 2, but for the case of a finite SO coupling �.
Boundaries between ground states with the same charge are shown
by dashed lines.
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transformation d1�
† ↔d2−� arising because ĤSO���

→ ĤSO�−�� under such�.
As mentioned above the significance of degeneracies be-

tween same-charge states is that, on coupling to the leads,
their associated low-energy degrees of freedom can be
screened by many-body Kondo effects which enhance con-
ductance through the dot.11,12 Two basic Kondo effects may,
in fact, arise,28 SU�4� and SU�2�. Only when the full model
is close to being SU�4� symmetric does the former arise �we
define “close to” shortly�; the more common case, occurring
for doubly degenerate atomic-limit states where the low-
energy effective model maps onto a spin-1

2 Kondo model, is
the SU�2� Kondo effect. One key physical distinction be-
tween the two is the low-energy/temperature Kondo scale on
which they are manifest, generically denoted TK. In the
strongly correlated regime U��, the Kondo scales in the
two cases are4

TK
SU�2� � � exp�−

�U

8�
	 , �22a�

TK
SU�4� � � exp�−

�U

16�
	 �22b�

modulo prefactors that depend weakly on the bare param-
eters, such that TK

SU�4��TK
SU�2�.

With the above in mind, the essential qualitative physics
of the model is readily deduced. We start with �=0, and
consider specifically the zero-temperature limit the effect of
temperature being simply to smear out the pristine T=0 be-
havior over an energy scale O�T��. The appropriate atomic-
limit picture for �=0 is Fig. 2. On coupling to the leads the
CB steps, and associated zero-bias conductance arising from
facile sequential tunneling, are broadened over an energy
scale O���.38 In the N=1, 2, and 3 electron valleys for B
=0, SU�4� Kondo effects take place,22,25,30,31 effective low-
energy SU�4� Kondo, or Coqblin-Schrieffer, models4 being
obtained via a Schrieffer-Wolff transformation on retaining
the 4! / N ! �4−N�!� degenerate dot states in the ground-state
manifold and the cotunneling processes that connect them.
The SU�4� Kondo physics in the N=1–3 valleys will natu-
rally persist at finite fields until �sB�O�TK

SU�4��; while for
field strengths in excess of the SU�4� Kondo scale, the
Kondo effect will be destroyed and the conductance will be
correspondingly low. And for �=0, the conductance in the
N=1 and 3 electron valleys as a function of B �or T� will be
coincident; reflecting the equivalence of associated states un-
der the particle-hole transformation discussed above.

On introducing a finite �, the key quantity in determining
whether SU�4� or SU�2� Kondo physics prevails is the ratio
�=� /TK

SU�4� with TK
SU�4� the SU�4� scale in the absence of SO

coupling�. For ��1 the zero-field SU�4� Kondo effects de-
scribed above are still favorable, since the Kondo stabiliza-
tion energy outweighs the splittings of the atomic-limit states
in Fig. 1. For these small �’s, one thus expects the physics to
be essentially unchanged from the �=0 limit. Only when �
becomes comparable to TK

SU�4� will it have a noticeable effect.
For ��TK

SU�4� by contrast the appropriate starting picture
is now Fig. 3, and SU�4� Kondo effects no longer arise. The

N=2 valley will not exhibit any Kondo effect at zero field,
since its ground state is singly degenerate. The N=1 and 3
valleys for B=0 will, however, display SU�2� Kondo effects
involving their doubly degenerate ground states �Fig. 3�: an
effective low-energy Kondo model of SU�2� form obviously
arises in each case, under a Schrieffer-Wolff transformation
retaining the appropriate degenerate pair of dot states indi-
cated in Fig. 3.

For B�0, the zero-field Kondo effects in the N=1 and 3
valleys will again “spill over” into the B plane by an amount
of order their SU�2� Kondo scales rather less than in the
SU�4� case, as above�. In addition, however, the level cross-
ings occurring at finite fields in both the N=2 �Ref. 39� and
N=3 valleys �Fig. 3� means that additional SU�2� Kondo
effects will now occur at fields B=Bo and Bs, respectively
the twofold ground-state degeneracy of the free dot states at
either field generating an SU�2� Kondo model under
Schrieffer-Wolff�. These will be discernible as long as they
are not subsumed by the zero-field SU�2� Kondo effect. This
is clearly not an issue in the N=2 valley, no zero-field Kondo
effect occurring here anyway for ��TK

SU�4�; while in the N
=3 valley it requires �����sBs�TK

SU�2�, readily seen to be
satisfied since TK

SU�2��TK
SU�4�. In the N=1 valley by contrast,

the absence of a ground-state level crossing at finite field
�Fig. 3� means that the SU�2� Kondo effect arising here at
zero field will simply be steadily destroyed with increasing
B, dying out on a scale of order �sB�O�TK

SU�2��. And since
the N=1 and 3 electron valleys in particular exhibit distinct
behavior as a function of field, then, as for the atomic-limit
states themselves, the N↔4−N symmetry of the conduc-
tance as a function of −��Vg is again absent for ��0.

V. RESULTS

The above considerations are purely qualitative, and we
have analyzed the model in detail via NRG, over a large
parameter space. Here we present a selection of results, fo-
cusing in particular on parameter regimes applicable to ex-
periment. Specifically, we make comparison to two experi-
mental works: Makarovski et al.9 �denoted “M”� and Jarillo-
Herrero et al.8 �“JH”�. The former device is somewhat more
strongly correlated than the latter �although in both cases the
ratio U /� is sufficiently large to generate nontrivial Kondo
behavior�, so we can compare theory to experiment in two
distinct physical regimes. Details of how the model param-
eters are chosen will be given at appropriate points in the
following. It will also be convenient to define and use the

reduced parameters: Ũ=U /�, �̃=� /�, T̃=T /�, and B̃
=�sB /�.

A. Zero-bias conductance at B=0

Figure 4 shows the B=0 zero-bias conductance as a func-
tion of the dimensionless gate voltage Ng= 1

2 �1− 2�
U � �Sec. II�,

for a range of temperatures �T� and three different SO cou-

pling strengths. Here we take an interaction Ũ=U /�=20, so
that the relative widths of the CB peaks for T�TK are in line
with the experiments of M �cf. the discussion in Ref. 31�.
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Figure 4�a� shows the �=0 case, considered in Ref. 31.
The T=0 conductance �dotted line� evolves stepwise with
Ng, and follows Eq. �19� as a function of nimp; with a step-
wise increase in nimp itself as the dimensionless gate voltage
is increased.31 The latter is a result of the relatively large
U /�, leading to strong charge quantization on the dot except
when � is within O��� of the atomic-limit charge-degeneracy
points at Ng= 1

2 , 3
2 , 5

2 , 7
2 . On increasing T the zero-bias con-

ductance is rapidly eroded toward the centers of the Ng=1, 2,
and 3 electron valleys, resulting in the familiar Coulomb-

blockade valley structure with conductance peaks around the
atomic-limit charge-degeneracy points. The temperature
scale over which the erosion takes place is of course TK

SU�4�,
given by Eq. �22� and obtained numerically57 as TK

SU�4�

�0.02� 0.03�� for Ng=2 1�. For TK
SU�4��T��, the half-

width at half maximum of the Coulomb-blockade peaks are
of order O��� �not precisely � due31 to electron interactions�;
while for T�� the CB peaks simply broaden to become of
width O�T� instead.

Figure 4�b� shows the effect of a nonzero SO coupling of
order ��TK

SU�4�, such that SO coupling competes with the
SU�4� Kondo effects in the centers of the Coulomb-blockade
valleys. The T=0 conductance is slightly eroded around Ng
�2, but is qualitatively unchanged elsewhere. Upon increas-
ing T, it is clear that once T��, the conductance appears
essentially identical to the �=0 case Fig. 4�a�, as one expects
physically.

On now considering ��TK
SU�4� �but still small relative to

the nonuniversal scale ��, the situation changes to that of
Fig. 4�c�. Here the Kondo effect in the two-electron
Coulomb-blockade valley at Ng�2 is destroyed at T=0 as
expected �Sec. IV� and the conductance remains rather low
for all temperatures shown. For the Ng=1 and 3 electron CB
valleys by contrast, the T=0 conductance is still Gc

0 /G0
�2e2 /h as for the SU�4� symmetric limit �=0, which fol-
lows in that case from Eq. �19� with nimp�1�3� for the center
of the Ng=1�3� electron CB valley�. This behavior for large
� is now, however, symptomatic of the SU�2� Kondo effect
arising in that case; as readily understood using the general
result Eq. �18� for Gc

0, considering the Ng=1 case explicitly.
Recall �Fig. 3� that the free-dot ground state for Ng=1 is the
degenerate pair �↑ ;−� and �−;↓� which generate SU�2�
Kondo under Schrieffer-Wolff on cotunneling to the leads,
Sec. IV�, for which 
n̂1↑�= 1

2 = 
n̂2↓� and 
n̂1↓�=0= 
n̂2↑�; and
since nimp;i��
n̂i�� as noted in Sec. III A, Eq. �18� gives
directly Gc

0 /G0�2e2 /h. Note, however, that although the T
=0 conductance for Ng=1 or 3 barely discriminates between
SU�4� �=0, Fig. 4�a�� and SU�2� ��TK

SU�4�, Fig. 4�c��, the
erosion of conductance with temperature occurs more rapidly
in the latter case—occurring naturally on the SU�2� Kondo
scale TK

SU�2� with TK
SU�2� /��8	10−3 in Fig. 4�c��.

The full T dependence of the conductance in the centers

of the CB valleys is shown in Fig. 5, Gc
0 vs T̃ �on a log scale�

for a range of �̃ values, and for Ng=2 Fig. 5�a�� and Ng
=1 Fig. 5�b�, Ng=1 and 3 being equivalent by symmetry for
B=0, see, e.g., Fig. 1�.

Results for �̃=0 have been considered in Ref. 31: in each
valley the strong conductance enhancement due to coherent
SU�4� Kondo transport is evident in the “Kondo plateau” for
temperatures T�TK�TK

SU�4� although note that the univer-
sal scaling forms of Gc

0�T� /Gc
0�T=0� in the two valleys differ

quantitatively,31 reflecting the two distinct SU�4� Kondo ef-
fects that arise therein�. On a temperature scale T�U /2, a
conductance shoulder is also evident, corresponding to inco-
herent sequential tunneling transport.

In the Ng=2-electron valley Fig. 5�a�� the Kondo plateau

is progressively destroyed on increasing the SO coupling �̃,
as all but the lowest �nondegenerate� atomic-limit states be-
come projected out of the low-energy manifold �see Fig. 1�.
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FIG. 4. �Color online� Zero-bias conductance Gc
0 / �G0e2 /h� as a

function of dimensionless gate voltage Ng, at B=0 and for Ũ=20.
Each panel shows the conductance for the range of temperatures

indicated, with SO coupling strengths �a� �̃=0, �b� �̃=0.02

�TK
SU�4�, and �c� �̃=0.2�TK

SU�4�.
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For � sufficiently large compared to TK
SU�4�, a peak is seen to

emerge in the conductance at T�O��� �in practice T
�� /2�—naturally so, this being the energy gap to higher
SO-split states �Fig. 1�, and mixing in of which enhances the
conductance. And in all cases shown, the high-temperature
�T��� behavior is entirely coincident regardless of �.

As expected from the discussion above, the T dependence

of the conductance upon increasing the SO coupling �̃ in the
center of the one-electron valley Fig. 5�b��, shows clearly a

crossover from the SU�4� behavior arising for �̃=0 to the
SU�2� behavior arising asymptotically for ��TK

SU�4�. This

limiting form occurs in practice for �̃�0.2 �i.e., � /TK
SU�4�

�7�, such that a further increase in �̃ naturally leaves the T
dependence of Gc

0 unchanged, as seen in the figure.

B. Zero-bias conductance at finite B

We turn now to finite field, fixing the SO coupling �̃ and

considering Gc
0�Gc

0�B̃ ,Ng� as a function of the dimension-

less gate voltage Ng= 1
2 �1− 2�

U � and field B̃=�sB /�. We first
consider T=0, in terms of which the finite-T behavior is
readily understood.

The �̃=0 conductance as a function of field22,26,30 is
shown in Fig. 6�a�. At B=0 it has the stepwise form seen in
Fig. 4 with a maximal conductance plateau of Gc

0 /G0
=4e2 /h in the center of the two-electron valley �Ng=2� and
plateaux of Gc

0 /G0�2e2 /h in the centers of the one- and
three-electron valleys. For B�0, the associated SU�4�
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FIG. 5. �Color online� Zero-bias conductance Gc
0 / �G0e2 /h� vs T̃

for various SO couplings �̃ as indicated, at B=0 with Ũ=20. For
�a� the center of the Ng=2-electron CB valley; �b� the center of the
Ng=1 valley. For B=0, the behavior for Ng=3 is identical to �b� by
symmetry �see Fig. 1�.
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Kondo effects are progressively destroyed: four distinct CB
peaks instead emerge, centered along the lines of atomic-
limit charge degeneracy �cf. Fig. 2�. The SU�4� Kondo be-
havior at B=0 persists over a finite B range, but is eventually
destroyed for �sB�TK

SU�4�.

On introducing a finite SO coupling �̃=0.2, the picture
changes to that of Fig. 6�b� �cf. Fig. 3�. The Coulomb-
blockade lines now show the expected kinks at the fields B
=Bo and Bs, while for sufficiently high B�Bs, SO coupling
is of course negligible and the behavior approaches that of
Fig. 6�a�.

Of primary interest here is the effect of SO coupling on
the Kondo physics. As seen earlier, at B=0 the SO coupling
destroys SU�4� Kondo in the two-electron valley, eliminating
the conductance maximum in this region. It also reduces the
one- and three-electron zero-field SU�4� Kondo effects to
SU�2� the latter apparent in Fig. 6�b� from a clear reduction
in the field strength required to destroy the Kondo peak�.
Although SO coupling thus has a destructive influence on the
Kondo effects for B=0, it leads as discussed in Sec. IV to
two finite-field SU�2� Kondo effects Fig. 6�b�� when level
crossings occur in the atomic-limit ground states. Both lead
to a significant enhancement of the T=0 conductance, of
order 2e2 /h and extending over field ranges �sB�TK

SU�2�,
resulting in marked differences between Figs. 6�a� and 6�b�.

The effect of temperature on conductance maps is best
seen by taking slices through the centers of the CB valleys in

the �Ng , B̃� plane. The center of the two-electron valley is �by
symmetry� �=−3U /2 for all B, while for the one- and three-
electron valleys we take the trajectories

� = − U/2 +
1

2
�oB �23�

and

� = − 5U/2 −
1

2
�oB , �24�

respectively �which approach the centers of the CB valleys in
the large-B limit�.

The results are shown in Fig. 7. In the two-electron valley
the only Kondo effect is the SU�2� Kondo “revived” at the

finite field B=Bo �B̃o�0.028 here�.39 The corresponding
TK

SU�2��0.007�, and hence on increasing T the Kondo effect

is in essence destroyed by T̃=T /�=0.1. Directly analogous
comments apply to the zero-field Kondo effects arising in the
one- and three-electron valleys and, for the latter case, to the
additional finite-field SU�2� Kondo effect revived at B=Bs

�B̃s=0.2 here�. We also note that the clear SO-induced asym-
metry between the one- and three-electron valleys persists
even for temperatures T /��0.1, where the finite-field

Kondo peak at B̃s is itself thermally washed out: relatively
small though it is, the conductance in the Ng=3 valley ap-

preciably exceeds that in the Ng=1 valley over a wide B̃
interval.

Weaker correlations

Thus far we have focused on the strongly correlated re-
gime where U /��1. This leads to a pristine separation of
energy scales: the CB peaks are separated by many times
their widths, and the Kondo scales are exponentially smaller
than �.

On moving to a more moderately correlated regime, the
energy scales naturally begin to merge, but the essential situ-
ation remains the same. An example is shown in Fig. 8,

where now Ũ=6 and �̃=1.2 �and �o /�s has been reduced
slightly to 5�.

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4

G
0 c
/
(G

0
e2 /

h)

T̃ = 0
T̃ = 0.01
T̃ = 0.05
T̃ = 0.1

Ng = 1

G
0 c
/
(G

0
e2 /

h) Ng = 2

G
c/

(G
0e

2
/

h)

B̃

Ng = 3

FIG. 7. �Color online� Slices through the Ng=1, 2, and 3 valleys
of Fig. 6�b�, showing the evolution of the conductance Gc

0 with

temperature T̃ as indicated.

0 1 2 3 4
0

1

2

0 1 2 3

B̃o

B̃s

Ng

Gc/(G0e2/h)

B̃

FIG. 8. �Color online� As Fig. 6�b�, but for a reduced coupling

strength Ũ=6 with �̃=1.2 and �o /�s=5.

INTERPLAY BETWEEN KONDO PHYSICS AND SPIN-… PHYSICAL REVIEW B 81, 075437 �2010�

075437-9



For Ũ=6, the resultant57 zero-field SU�2� Kondo scale,
for example, is TK

SU�2��0.5�, and hence TK
SU�2�, �, and � are

all comparable. As seen from Fig. 8, in comparison to the
more strongly correlated Fig. 6 this generates a more pro-
nounced asymmetry between the one- and three-electron val-
leys on increasing B, in particular with the CB peaks in the
three-electron valley brought closer together.

The results shown in Fig. 8 agree well with the experi-
mental results of JH �Ref. 8� for the four-electron shell cen-
tered on Vg�3 V,58 as evident from direct comparison with
Fig. 2�b� of JH in the interval 2.5�Vg�3.5 V. And more
significantly, they provide a natural explanation for the ob-
servations, as arising from the interplay between spin-orbit
and Kondo physics.

The bare parameters employed in Fig. 8 are themselves
consistent with the JH experiment. From Fig. 2�b� of JH �the
C2-D2 line therein� one readily identifies the experimental
Bs�3 T, and likewise the experimental ratio ��o /�s
=�Bs /Bo�5 �from the C2-D2 and B1-C1 lines�. Since Bs
=� /�s Eq. �21��, and �s /2=0.058 meV T−1 �we take g=2�,
the experimental Bs gives the SO coupling constant as �
=�sBs�0.35 meV—which we note is in line with that mea-
sured recently in the CNT experiments of Ref. 33 via se-
quential tunneling spectroscopy at finite bias.

Fitting the atomic-limit CB peaks to the JH experimental
data gives U /��5 and hence U�2 meV, in good agree-
ment with the heights of the CB diamonds in Fig. 2 of JH;
while the ratio U /� is estimated straightforwardly by com-
paring the widths of the CB peaks to their separation. Finally,
the experimental temperature T=0.34 K�0.03 meV is suf-
ficiently small compared to the other scales in the problem,
that one can set T=0 with impunity in the NRG calculations.

As above, we consider the behavior seen in Fig. 8 to be in
striking agreement with Fig. 2�b� of JH in the region 2.5
�Vg�3.5 V. We also point out that the experiment deviates
from our calculation above a gate voltage Vg�3.5 V. This
arises simply because the levels of the adjacent four-electron
shell in experiment are brought into play by the magnetic
field, and at sufficiently high B “interfere” with those arising
from the shell considered. This is naturally not taken into
account in the model �although it would be straightforward
to incorporate�.

C. Finite bias

So far we have considered the zero-bias conductance as a
function of gate voltage, magnetic field, and temperature.
Experimentally there is another “knob to turn,” the source-
drain bias voltage Vsd. As explained in Sec. III, this we
handle approximately using Eq. �12�, which relates the
finite-bias conductance to the frequency dependence of the
equilibrium single-particle spectra Di����.

Our main interest here is how finite fields and SO cou-
pling affect the low-energy Kondo behavior of the conduc-
tance. When �=0=B, all four Di����’s share a common59

SU�4� Kondo resonance in each of the Ng=1, 2, and 3 CB
valleys. On introducing a finite B and �, and thus lowering
the symmetry to U�1�	U�1�	U�1�	U�1�, each Di���� in-
stead possesses a distinct Kondo resonance. On application

of a field, these resonances shift away from the Fermi level
�=0 by different amounts, and at high fields, in particular,
the four resonances are sufficiently well separated that the
combined spectrum �i,�Di���� contains four separate
peaks.22 We also emphasize at this point that, despite occa-
sional naive belief to the contrary, the field-induced shifts of
the Kondo resonance are not simple “Zeeman splittings:”
they have, in fact, a nonlinear field dependence brought
about by the strong interactions on the dot, which can either
underestimate or overestimate the Zeeman splitting depend-
ing on the strength of the field see, e.g., Ref. 60 and refer-
ences therein for a discussion of the SU�2� Anderson model�.

Bearing the above in mind, we consider �Fig. 9� finite-
bias differential conductance maps, Gc as a function of Vsd
and gate voltage Ng, with each taken at fixed field. Again we
start at T=0, moving to finite T later when comparing to the
experiments of M.9 Taking the limit T→0 in Eq. �12� shows
that Gc�Vsd� is proportional to the average of �i,�Di���
= �

1
2eVsd�, i.e., the �approximate� conductance amounts to a

symmetrized combination of the total single-particle spec-
trum of the dot.

The B=0=� behavior has been described in Ref. 31 �Fig.
5 therein�. Two distinct features arise: the narrow zero-bias
SU�4� Kondo ridges produced by coherent many-body tun-
neling, and finite bias Coulomb-blockade diamonds gener-
ated by incoherent sequential tunneling. The former occur
only below T’s of order TK

SU�4� and are likewise destroyed by
the source-drain bias when eVsd becomes of the same order,
while the latter are of width �max�� ,T� and hence rather
more robust.

Figure 9 shows the behavior for a finite �̃=0.2 at T=0,
for a range of field strengths. The B=0 conductance is shown
in Fig. 9�a�. The Coulomb-blockade diamonds are essentially
unchanged from the �=0 limit31 since ���, and the form
of the zero-bias conductance is as discussed in relation to
Fig. 4: on switching on �, the one- and three-electron valleys
�Ng�1 and 3� show SU�2� Kondo effects instead of SU�4�,
while the conductance in the two-electron valley at Ng�2 is
substantially reduced. We now see from Fig. 9�a� that the
reduction in the zero-bias conductance in the two-electron
valley reflects a splitting of the Kondo resonance in the sym-
metrized spectrum: two narrow conductance peaks are seen
to arise for Ng�2 when eVsd� ��.

On slightly increasing the field to B=Bo, Fig. 9�b�, the
behavior around eVsd�0 changes. First, the SU�2� Kondo
resonances in the one- and three-electron valleys split in
analogy to the well-known behavior of the SU�2� AIM in a
magnetic field�. In the two-electron valley at B=Bo by con-
trast, the orbital SU�2� Kondo effect described earlier arises,
and as such the splitting of the Kondo resonance here is
reduced to zero.

The next “special” value of the field is B=Bs, shown in
Fig. 9�c�. Here the SU�2� spin Kondo effect takes place in
the three-electron valley, whence the splitting of the Kondo
resonance seen in Fig. 9�b� is reduced to zero. In addition,
two faint “shoulders” at a small finite bias can just be made
out. These are the beginnings of the separation of the total
spectrum �i�Di���� into four separate components at high
field �as mentioned above�, which we discuss in more detail
below.
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Finally, for B�Bs the atomic-limit ground states in all
valleys are unchanged with increasing B, and the low-energy
peak splittings in the Vsd dependence of the conductance all
increase monotonically. Moving from �d� to �e� and �f� in
Fig. 9, we see that once the field becomes of order � the
Kondo peaks simply merge with the CB diamonds �or the
Hubbard satellites in single-particle spectra terminology�,
and the latter themselves begin to split from then on.

At this point we make our first comparison with the ex-
periment of M.9 Keeping the ratio U /�=20, we take �
=0.5 meV such that the resulting U=10 meV is in good
agreement with the heights of the CB diamonds in Fig. 2 of
M. Our choice of � /�=0.2 then corresponds to �
=0.1 meV, which is of the same order of magnitude as that
measured in another device.33 And we now consider T /�
=0.3 and �sB /�=0.7, to be in line with the experimental
temperature and field, T=2 K and B=3 T. Using a color
map similar to M, and taking G0=1, we obtain Fig. 10,
which is to be compared with Fig. 2 of M.

Our results are in good agreement with the experiment. In
particular, we note that the low-energy features identified in
the experimental paper9 are reproduced by the calculations.
In the two-electron valley we see a circular region of reduced
conductance, while in the one- and three-electron valleys we
capture two and one low-energy peaks, respectively �marked
by arrows in Fig. 10�.

On comparing Fig. 10 to the T=0 results in Fig. 9, the
apparent single peak in the center of the three-electron valley
is, in fact, seen to be a consequence of thermal broadening.
At zero temperature in the three-electron valley, a single

peak centered at zero bias occurs only at the special fields of
B=0 and Bs as explained above �at any other field, this zero-
bias peak is always split�. While a similar splitting arises also
in the one-electron valley, it increases monotonically from
B=0 and is hence somewhat larger than that of the three-
electron valley. As a result, the two peaks in the one-electron

valley remain separate at the particular temperature T̃=0.3
�T�2 K� used in Fig. 10, while the two peaks in the three-
electron valley are merged into one. If the experiment had
been performed at a sufficiently lower temperature, we
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�̃=0.2, and �o /�s=5, such that for �b� B=Bo and �c� B=Bs.

0 1 2 3 4
-20

-10

0

10

20

0.2 0.6 1.0

Ng

Gc/(e2/h)

eV
sd

/
Γ

FIG. 10. �Color online� As Fig. 9 but with B̃=0.7, T̃=0.3, and a
color map chosen to be similar to Fig. 2 of Ref. 9. The arrows
indicate the positions of low-energy peaks, see text. Taking �
=0.5 meV, the eVsd axis extends from −10 to 10 meV, B�3 T and
T�2 K, in agreement with Fig. 2 of Ref. 9.

INTERPLAY BETWEEN KONDO PHYSICS AND SPIN-… PHYSICAL REVIEW B 81, 075437 �2010�

075437-11



would expect two low-energy peaks in both the one- and
three-electron valleys.

To compare further with experiment, we now fix the gate
voltage to lie at the centers of the one-, two- and three-
electron valleys �cf. Fig. 7� and consider the conductance as
a function of source-drain bias and field. The results are
shown in Figs. 11�a�–11�c� as color maps and in Figs.

11�d�–11�f� as slices at fixed B̃=0,0.2,0.4, . . . ,1.6. For clar-
ity, the data in Figs. 11�d�–11�f� have been shifted vertically

by 0.2�1.6− B̃� to separate the individual lines. The figure is
to be compared with Fig. 3 of M.

We see in Figs. 11�a�–11�c� the evolution of the low-
energy conductance peaks with increasing field, which again
agree rather well with experiment. In the one-electron valley
Fig. 11�a�� the single Kondo peak at B=0 is seen to split
into the four spectral features highlighted in M; while, as
discussed earlier, in the three-electron valley Fig. 11�c�� for
sufficiently small B the two lowest-energy peaks are merged

by thermal broadening. For larger B �B̃�1 here� the two
peaks in the three-electron valley do eventually separate in
our calculations, as expected on physical grounds. This split-
ting is difficult to see in the experiment due to the neighbor-
ing four-electron shell being brought into play at high field,
but should be observable in a similar device with a larger
energy separation between shells.

The destruction of the Kondo effect in the two-electron
valley with increasing B, as observed in M, is also clearly
seen Fig. 11�b��, first as a splitting of the B=0 Kondo reso-
nance which then rapidly enlarges to leave an almost
rectangular-shaped “hole” in the conductance around Vsd=0
Fig. 11�e��. Note also that the data slices shown in Figs.
11�d�–11�f� are symmetrical about Vsd=0, reflecting the as-

sumption in the calculations of a perfectly symmetrical volt-
age split between the leads �Sec. III�. Their experimental
counterparts in Fig. 3 of M for the one- and two-electron
valleys �which are not appreciably affected by “overlap”
with a higher shell� are somewhat asymmetrically disposed
about Vsd=0. This can, in fact, be reproduced in calculation
by parametrizing a small degree of asymmetry into the volt-
age split without affecting the essential quality of Figs.
11�a�–11�c��, although we do not pursue it further here.

VI. CONCLUSION

In this paper we have studied the effect of SO coupling in
carbon nanotube quantum dots, by applying the NRG to a
modified SU�4� Anderson impurity model �AIM�. Our main
focus has been the case in which the SO coupling is compa-
rable to or exceeds the SU�4� Kondo scale, since here the
two effects interplay and compete, leading to a rich range of
physical behavior. The differential conductance over a wide
parameter space has been calculated as a function of gate
voltage, magnetic field, and temperature, in order to eluci-
date the key physics of the model. We have moreover shown
that the inclusion of SO coupling accounts for a number of
important experimental observations in the works of Jarillo-
Herrero et al.8 and Makarovski et al.,9 the origin of which
stems directly from the interplay between SO and Kondo
physics.

To conclude, we comment on the suitability of the “pure”
SU�4� AIM as a model for carbon nanotube quantum dots. In
Ref. 31, experimental data of Makarovski et al.10 at zero
field was found to be in good agreement with the SU�4�
Anderson model without including SO coupling, over a wide
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range of U /�. Given the results of the present paper, one
naturally asks: why?

Let us first summarize the experiment. The conductance
of the experimental device10 was measured, at several fixed
temperatures, as a function of the applied gate voltage. The
latter was swept over a sufficiently wide range that four dif-
ferent electron shells �“groups I–IV”� were brought through
the Fermi level, one at a time. A consequence of varying the
gate voltage by this relatively large amount was that the tun-
nel couplings to the dot ��� varied from one shell to the next.
As a result, the group I data were described by an SU�4�
model with ��0.5 meV �and U /�=20�, groups II and III
were more consistent with ��1 meV �U /�=10� while
group IV had ��2 meV �U /�=5�.

To understand why these data could be described by the
SU�4� model, we note that �a� the experimental “base” tem-
perature was 1.3 K�0.11 meV and �b� the Kondo scales
for groups II–IV are all in excess of 4 K�0.36 meV see
Fig. 3�b� of Ref. 10�. Assuming the SO coupling to be com-
parable to the value 0.1 meV considered above, groups II–IV
can then be described by a pure SU�4� Anderson model �for

essentially all temperatures�, since each has a TK
SU�4� appre-

ciably in excess of the SO coupling. While the latter is not
the case for the group I shell31 of Ref. 10, data were only
obtained down to a temperature of order � where, according
to Sec. V A, the effects of SO coupling cannot be seen in the
zero-field behavior alone. Only by examining the behavior of
the group I shell in a magnetic field �as considered here�, or
by measuring its zero-field conductance down to a rather
lower temperature on the order of �0.1 K or so, can the
effects of SO coupling be observed.

ACKNOWLEDGMENTS

We are grateful to Gleb Finkelstein for stimulating discus-
sions. M.R.G., F.W.J., and D.E.L. thank the EPSRC �U.K.�
for financial support under Grant No. EP/D050952/1.
M.R.G. gratefully acknowledges the Oxford e-Research Cen-
tre, OxGrid �Ref. 61�, and the UK National Grid Service for
providing computer time. F.B.A. acknowledges financial
support from the DFG �Germany� under Grant No. AN 275/
6-1.

1 C. Dekker, Phys. Today 52 �5�, 22 �1999�.
2 S. Sapmaz, P. Jarillo-Herrero, L. P. Kouwenhoven, and H. S. J.

van der Zant, Semicond. Sci. Technol. 21, S52 �2006�.
3 P. Avouris, Z. Chen, and V. Perebeinos, Nat. Nanotechnol. 2,

605 �2007�.
4 A. C. Hewson, The Kondo Problem to Heavy Fermions �Cam-

bridge University Press, Cambridge, 1993�.
5 J. Nygård, D. H. Cobden, and P. E. Lindelof, Nature �London�

408, 342 �2000�.
6 M. R. Buitelaar, A. Bachtold, T. Nussbaumer, M. Iqbal, and C.

Schönenberger, Phys. Rev. Lett. 88, 156801 �2002�.
7 P. Jarillo-Herrero, J. Kong, H. S. J. van der Zant, C. Dekker, L.

P. Kouwenhoven, and S. De Franceschi, Nature �London� 434,
484 �2005�.

8 P. Jarillo-Herrero, J. Kong, H. S. J. van der Zant, C. Dekker, L.
P. Kouwenhoven, and S. De Franceschi, Phys. Rev. Lett. 94,
156802 �2005�.

9 A. Makarovski, A. Zhukov, J. Liu, and G. Finkelstein, Phys.
Rev. B 75, 241407�R� �2007�.

10 A. Makarovski, J. Liu, and G. Finkelstein, Phys. Rev. Lett. 99,
066801 �2007�.

11 T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 �1988�.
12 L. I. Glazman and M. E. Raikh, JETP Lett. 47, 452 �1988�.
13 D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-

Magder, U. Meirav, and M. A. Kastner, Nature �London� 391,
156 �1998�.

14 S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven,
Science 281, 540 �1998�.

15 W. G. van der Wiel, S. De Franceschi, T. Fujisawa, J. M. Elzer-
man, S. Tarucha, and L. P. Kouwenhoven, Science 289, 2105
�2000�.

16 L. Borda, G. Zaránd, W. Hofstetter, B. I. Halperin, and J. von
Delft, Phys. Rev. Lett. 90, 026602 �2003�.

17 D. Boese, W. Hofstetter, and H. Schoeller, Phys. Rev. B 66,

125315 �2002�.
18 G. Zaránd, A. Brataas, and D. Goldhaber-Gordon, Solid State

Commun. 126, 463 �2003�.
19 K. Le Hur, P. Simon, and L. Borda, Phys. Rev. B 69, 045326

�2004�.
20 M. R. Galpin, D. E. Logan, and H. R. Krishnamurthy, Phys. Rev.

Lett. 94, 186406 �2005�.
21 R. López, D. Sánchez, M. Lee, M.-S. Choi, P. Simon, and K. Le

Hur, Phys. Rev. B 71, 115312 �2005�.
22 M. S. Choi, R. Lopez, and R. Aguado, Phys. Rev. Lett. 95,

067204 �2005�.
23 M. R. Galpin, D. E. Logan, and H. R. Krishnamurthy, J. Phys.:

Condens. Matter 18, 6545 �2006�.
24 M. R. Galpin, D. E. Logan, and H. R. Krishnamurthy, J. Phys.:

Condens. Matter 18, 6571 �2006�.
25 A. K. Mitchell, M. R. Galpin, and D. E. Logan, Europhys. Lett.

76, 95 �2006�.
26 Z. Rui, Chin. Phys. Lett. 23, 1578 �2006�.
27 R. Sakano and N. Kawakami, Phys. Rev. B 73, 155332 �2006�.
28 J. S. Lim, M.-S. Choi, M. Y. Choi, R. López, and R. Aguado,

Phys. Rev. B 74, 205119 �2006�.
29 K. Le Hur, P. Simon, and D. Loss, Phys. Rev. B 75, 035332

�2007�.
30 C. A. Büsser and G. B. Martins, Phys. Rev. B 75, 045406

�2007�.
31 F. B. Anders, D. E. Logan, M. R. Galpin, and G. Finkelstein,

Phys. Rev. Lett. 100, 086809 �2008�.
32 M. Mizuno, E. H. Kim, and G. B. Martins, J. Phys.: Condens.

Matter 21, 292203 �2009�.
33 F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen, Nature

�London� 452, 448 �2008�.
34 T. Ando, J. Phys. Soc. Jpn. 69, 1757 �2000�.
35 D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. B

74, 155426 �2006�.

INTERPLAY BETWEEN KONDO PHYSICS AND SPIN-… PHYSICAL REVIEW B 81, 075437 �2010�

075437-13



36 A. Secchi and M. Rontani, Phys. Rev. B 80, 041404�R� �2009�.
37 B. Wunsch, Phys. Rev. B 79, 235408 �2009�.
38 D. E. Logan and M. R. Galpin, J. Chem. Phys. 130, 224503

�2009�.
39 T.-F. Fang, W. Zuo, and H.-G. Luo, Phys. Rev. Lett. 101,

246805 �2008�.
40 It is, for example, readily shown to break down at low energy/

temperature, and to violate Fermi-liquid behavior.
41 H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys.

Rev. B 21, 1003 �1980�.
42 R. Bulla, T. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395

�2008�.
43 Carbon Nanotubes, edited by L. L. Sohn, L. P. Kouwenhoven,

and G. Schon �Springer, New York, 2001�.
44 Y. Oreg, K. Byczuk, and B. I. Halperin, Phys. Rev. Lett. 85, 365

�2000�.
45 Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 �1992�.
46 R. Peters, T. Pruschke, and F. B. Anders, Phys. Rev. B 74,

245114 �2006�.
47 A. Weichselbaum and J. von Delft, Phys. Rev. Lett. 99, 076402

�2007�.
48 F. B. Anders, Phys. Rev. Lett. 101, 066804 �2008�.
49 D. E. Logan, C. J. Wright, and M. R. Galpin, Phys. Rev. B 80,

125117 �2009�.
50 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 �1960�.

51 D. C. Langreth, Phys. Rev. 150, 516 �1966�.
52 F. B. Anders and A. Schiller, Phys. Rev. B 74, 245113 �2006�.
53 F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801

�2005�.
54 V. L. Campo and L. N. Oliveira, Phys. Rev. B 72, 104432

�2005�.
55 W. C. Oliveira and L. N. Oliveira, Phys. Rev. B 49, 11986

�1994�.
56 R. Bulla, A. C. Hewson, and T. Pruschke, J. Phys.: Condens.

Matter 10, 8365 �1998�.
57 In practice TK

SU�N� is defined as the temperature for which the
impurity entropy �Ref. 41� is 1

2 ln�N�, suitably below its value for
the SU�N� local moment fixed point.

58 Another shell �centred on Vg�2 V� has previously been com-
pared to an SU�4� model without spin-orbit coupling, Ref. 30,
reproducing its qualitative features but predicting the conduc-
tance to be symmetric about reflection in the Ng=2 line as in
Fig. 6�a�.

59 The Ng=1 and 2 Kondo resonances are themselves distinct
�Refs. 22 and 25�.

60 D. E. Logan and N. L. Dickens, J. Phys.: Condens. Matter 13,
9713 �2001�.

61 D. C. H. Wallom and A. E. Trefethen, in Proceedings of the UK
e-Science All Hands Meeting 2006, edited by S. J. Cox �National
e-Science Centre, Nottingham, UK, 2006�.

GALPIN et al. PHYSICAL REVIEW B 81, 075437 �2010�

075437-14


